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Write your answers in the D2 answer book for this paper.

1. (a) Explain the difference between the classical travelling salesperson problem and the practical 
travelling salesperson problem.

(2)
A B C D E F G

A – 31 15 12 24 17 22

B 31 – 20 25 14 25 50

C 15 20 – 16 24 19 21

D 12 25 16 – 21 32 17

E 24 14 24 21 – 28 41

F 17 25 19 32 28 – 25

G 22 50 21 17 41 25 –

 The table above shows the least direct distances, in miles, between seven towns, A, B, C, D, E, F 
and G.  Yiyi needs to visit each town, starting and finishing at A, and wishes to minimise the total 
distance she will travel.

 (b) Show that there are two nearest neighbour routes that start from A.  State these routes and their 
lengths.

(3)

 (c) Starting by deleting A, and all of its arcs, find a lower bound for the length of Yiyi’s route.
(3)

 (d) Use your results to write down the smallest interval which you can be confident contains the 
optimal length of Yiyi’s route.

(2)

(Total 10 marks)
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2. 

Figure 1

 Figure 1 shows a capacitated, directed network of pipes.  The number on each arc represents the 
capacity of the corresponding pipe.  The numbers in circles represent an initial flow.

 (a) List the saturated arcs.
(2)

 (b) State the value of the initial flow.
(1)

 (c) State the capacities of the cuts C1 and C2
(2)

 (d) By inspection, find a flow-augmenting route to increase the flow by three units.  You must state 
your route.

(1)

 (e) Prove that the new flow is maximal.
(2)

(Total 8 marks)
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3. Four pupils, Alexa, Ewan, Faith and Zak, are to be allocated to four rounds, 1, 2, 3 and 4, in a 
mathematics competition.  Each pupil is to be allocated to exactly one round and each round must 
be allocated to exactly one pupil. 

 Each pupil has been given a score, based on previous performance, to show how suitable they are 
for each round.  The higher the score the more suitable the pupil is for that round.  The scores for 
each pupil are shown in the table below. 

1 2 3 4

Alexa 61 50 47 23

Ewan 71 62 20 61

Faith 70 49 48 49

Zak 72 68 67 67

 (a) Reducing rows first, use the Hungarian algorithm to obtain an allocation that maximises the 
total score.  You must make your method clear and show the table after each stage.

(8)

 (b) State the maximum total score.
(1)

(Total 9 marks)
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4. A three-variable linear programming problem in x, y and z is to be solved.  The objective is to 
maximise the profit, P.  The following tableau is obtained after the first iteration.

Basic Variable x y z r s t Value

r 0 5  2 1 –3 0 10

x 1 2  3 0  1 0 18

t 0 1 –1 0  4 1   3

P 0 3 –4 0  1 0  7

 (a) State which variable was increased first, giving a reason for your answer.
(1)

 (b) Perform one complete iteration of the simplex algorithm, to obtain a new tableau, T.  Make 
your method clear by stating the row operations you use.

(5)

 (c) Write down the profit equation given by T.
(1)

 (d) State whether T is optimal.  You must use your answer to (c) to justify your answer.
(2)

(Total 9 marks)
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5. The table below shows the cost of transporting one unit of stock from each of four supply points, 1, 
2, 3 and 4, to each of three demand points, A, B and C.  It also shows the stock held at each supply 
point and the stock required at each demand point.  A minimal cost solution is required.

A B C Supply

1 18 23 20 15

2 22 17 25 36

3 24 21 19 28

4 21 22 17 20

Demand 40 20 25

 (a) Explain why it is necessary to add a dummy demand point. 
(1)

 (b) Add a dummy demand point and appropriate values to Table 1 in the answer book. 
(1)

 (c) Use the north-west corner method to obtain a possible solution.
(1)

 After one iteration of the stepping-stone method the table becomes

A B C D

1 15

2 19 17

3  3 25

4  6 14

 (d) Taking D3 as the entering cell, use the stepping-stone method twice to obtain an improved 
solution.  You must make your method clear by stating your shadow costs, improvement 
indices, routes, entering cells and exiting cells.

(6)

 (e) Determine whether your solution from (d) is optimal.  Justify your answer.
(3)

(Total 12 marks)
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6. A two-person zero-sum game is represented by the following pay-off matrix for player A.

B plays 1 B plays 2 B plays 3

A plays 1  5 –3 1

A plays 2  2  5 0

A plays 3 –4 –1 4

 (a) Verify that there is no stable solution to this game.
(2)

 (b) Formulate the game as a linear programming problem for player A.  Define your variables 
clearly.  Write the constraints as equations.

(7)

 (c) Write down an initial simplex tableau, making your variables clear.
(3)

(Total 12 marks)
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7. Remy builds canoes.

 He can build up to five canoes each month, but if he wishes to build more than three canoes in any 
one month he has to hire an additional worker at a cost of £400 for that month. 

 In any month when canoes are built, the overhead costs are £150

 A maximum of three canoes can be held in stock in any one month, at a cost of £25 per canoe per 
month. 

 Canoes must be delivered at the end of the month. 

 The order book for canoes is

Month January February March April May

Number ordered 2 2 5 6 4

 There is no stock at the beginning of January and Remy plans to have no stock after the May 
delivery.

 (a) Use dynamic programming to determine the production schedule that minimises the costs given 
above.  Show your working in the table provided in the answer book and state the minimum 
cost.

(13)

 The cost of materials is £200 per canoe and the cost of Remy’s time is £450 per month.  Remy sells 
the canoes for £700 each.

 (b) Determine Remy’s total profit for the five-month period.
(2)

(Total 15 marks)

TOTAL FOR PAPER: 75 MARKS
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